人工知能(AI)と機械学習(ML)の進化が急速に進む今日において、モデルによって生成される分析情報の質を向上するためには、さまざまなタイプのデータを管理、処理する能力が何よりも重要です。
ストレージ戦略を最適化する場合、次の要素を考慮する必要があります。
企業全体でAIを幅広く採用するためのデータ アーキテクチャをまとめるのは、簡単なことではありません。そのため、GPUサーバを調達したり、ハイパースケーラ経由でGPUサーバにアクセスしたりする企業の多くがデータの管理に行き詰まっているというのは、驚くことではありません。IDCの調査では、データの移動と管理が、AI導入を成功させるうえで最もよく知られた障壁の1つであると指摘されています。
NetAppは、インフラに対するインテリジェントな統合アプローチで、データの格納方法や格納場所に関係なく、すべてのAIチームがデータ サイロの問題を克服できるよう支援します。AIワークフローの運用にNetAppソリューションが欠かせない理由として、具体的には次のような利点が挙げられます。
NetAppのお客様は、統合されたハイブリッド マルチクラウドを長年にわたってご利用いただいてきました。実際、過去12カ月間にわたる生成AIの急増をNetAppで予測することはできませんでしたが、NetAppはデータ主体の企業向けに設計されたインテリジェントなデータ インフラの構築を精力的に進めてきていました。そして、このフレームワークこそが、企業がAIと生成AIを活用して競争力を高めるために欠かせないものだったのです。
AIワークフロー向けデータ アーキテクチャに関するIDCレポートについては、『Unified Data Architectures Provide Needed Flexibility for AI Workflows』をご覧ください。また、AIと生成AIに関するNetAppのエグゼクティブの見解についてはこちらのページからご確認いただけます。
Arun GururrajanはNetAppのリサーチ&データ サイエンス担当バイス プレジデントです。製品全般にわたるAI / ML / データ サイエンスへの取り組みを統括しています。過去には、MetaやMicrosoftでさまざまなリーダー職に従事し、長期的に幅広く採用されるAI搭載製品の開発に携わってきました。
To edit this Page SEO component